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ABSTRACT

A testable design for an asynchronous n.bit M co /terr is presented, with test inputs that

provide full coverage for stuck-at and stuck-open faults. Test time is shown to be O(n), where the

counter outputs are not observable, compared to 0(n )time for a synchronous counter. There are

three control signals required for the testable counter as opposed to one reset signal for the base

counter. The testable counter incorporates a scan path, utilizing the state storage in the counter

cells, whereby the counter is converted into an n-bit "master-slave' asynchronous shift register with

the counter's request input also being used as the shift register input. The only observable outputs

are the acknowledge and carry-out request signals. The counter utilizes two-cycle (transition)

signaling and guarantees that new output values are available before acknowledge is toggled. Two

16 bit counters, one base design and one scan-based design, are currently ij- fabrication (2.0 .- fr

n-well CMOS) and will be used to empirically verify the analysis. Splice3 simulations indicate

the counter will run at an average speed of approximately 50 MHz. When compared to the base

cell, the testable design is achieved with a 15% increase in trans' tor count (from 52 to 60); an

increase in chip area of approximately 6%; and a reduction in circuit speed of 7.1% (based on

Splice3 simulation).
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1 Introduction

Asynchronous self-timed systems operate with two control signals: request and acknowledge. Re-

quest signals the system to initiate an action, while acknowledge indicates the action has been

completed. This is in contrast to a synchronous system, in which a clock transition initiates an

action, which is assumed to be complete some number of clock cycles later. In the asynchronous

case, the requestor is in control until the request is generated, at which time control moves to the

system receiving the request, and the requestor waits until the corresponding acknowledge signal.

Since the requestor is required to wait for the acknowledge, the time taken by the requested system

may be arbitrary. It may also vary from request to request, so that performance of an asynchronous

system is measured by the average response time, rather than a fixed clock rate.

There are two ways to signal requests and acknowledgments: two-cycle or transition signaling and

four-cycle or level signaling, as discussed in [2]. In four cycle signaling, the quiescent state has

request and acknowledge both low. A request event is signaled when the requestor raises the

request line. The requested system then performs its action and raises the acknowledge line to

signal completion. There then follows a sequence where the requestor lowers the request line to

indicate receipt of the acknowledgment, and finally the requested system lowers the acknowledge line

to return the interface to the quiescent state. Two-cycle signaling eliminates the time required to

return to the low-low state by using the transitions themselves to indicate events. In this mode, the

quiescent state is determined when both request and acknowledge are at the same level. A request

is signaled by toggling the request line, and later acknowledged by a toggle of the acknowledge line.

The state of the system is determined solely by the relative levels of request and acknowledge.
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Figure 1: Counter Schematic

The counters discussed in this paper are essentially ripple-carry counters, using two-cycle signaling

for control and a bundled data protocol, also discussed in [2]. The worst case cycle time for these

counters is nr, (r is the average delay per cell), while the average cycle time is less than 2r

independent of the number of bits in the counter. The data signals are conveyed by the logic levels

on n output lines, while request and acknowledge events are signaled by transitions. The counter

guarantees that the data lines are driven to the correct levels before the acknowledge transition.

It is left to the user of these signals to assure that delays along the data path are not significantly

larger than delays on the acknowledge path. This is the bundling constraint. The module assumes

the environment is in control whenever request and acknowledge are at the same level. It will then

continue to drive out the data lines and the acknowledge line unchanged, until the request line

is toggled. At this point, the module has control to update the outputs, and it is assumed that

the environment will make no further changes to the request line, and will not sample the counter

outputs until the acknowledge line is toggled by the module.



An important property of asynchronous systems is composability, i.e., they may be wired together

without regard for timing considerations as long as the same signaling protocols are obeyed. There

are many possible types of inter-connection, of which two (series and transition-or) are used in

the asynchronous counter. When two asynchronous modules are wired together in series, the

acknowledge signal from the first module becomes a request signal to the second module, and the

acknowledge from the second module becomes the acknowledge signal for the combination. The

second connection, the transition-or, performs the OR function on control signals. It is implemented

as an XOR gate. The counter discussed in this paper uses both of these connections. Each bit cell

consists of an asynchronous toggle module to generate the correct bit value and carry-out signals,

and an XOR gate to combine the acknowledge signal of the toggle with the ackowledge signal from

the next cell. These cells are connected in series to form the n-bit counter, as shown in Figure 1.

A question to be considered about asynchronous systems is testability. An n-bit counter is a state

machine with 2n states. Complete functional testing requires exponential time, assuming that the

bit values are observable. A recent paper [3] discusses adding a scan path to a simple synchronous

counter. with the resulting circuit being fully testable for stuck-at and stuck-open faults in 0(n 2 )

time. We show that similar modifications can be made to the asynchronous counter, and the

resulting circuit is fully testable in 0(n) time.

2 Fully Testable Asynchronous Counter

Figure 1 shows a block diagram of the counter, and the composition of the individual bit cells.

There are n identical cells, each consisting of an asynchronous two-cycle (transition) toggle module

and an XOR gate. The counter request is wired directly to the input of the low-order toggle cell.
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Figure 2: Asynchronous Toggle Schematic

t

static inverter

Figure 3: Asynchronous Toggle Schematic - With Clocked Inverters

and the counter acknowledge is taken from the XOR gate of the low-order cell. The carry-out

signal from the high-order bit cell is used as the scan-path output and is routed to an observable

pin. It is also connected internally to the last XOR gate, making the counter modulo 2'.

A transition toggle functions as a divide by two, or alternate output circuit. Figure 2 shows a

gate level schematic for a transition toggle There is one input a, and two outputs, X and Y. The

cross-coupled NOR loop generates non-overlapping clock signals b1, b2, t1 and t 2 for the oscillator

loop containing the X and I' state bits. The oscillator loop consists of two static endbled Muller C-
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Figure 4: Asyncronous Toggle Transitien Diagram

elements and an inverter. The enabled C-element acts as a last-value gate. While the enable signal

is high, the output follows the input. When enable goes low, the element remembers the last input

value and does not change its output until enable goes high again. C-elements are essentially level-

sensitive latches. The control signals for them must be generated by the cross-coupled NOR loop of

Figure 2 to ensure that no race conditions exist over the cycle. A static enabled Muller C-element

may be built using a clocked inverter followed by a static inverter. leading to the implementation

of the transition toggle shown in Figure 3. In operation, the clocked inverters in the C-elements

alternately transmit the value of F to X when the input a rises, and tae value of X to Y when the

input a falls.

The state diagram for a transition toggle is shown in Figure 4. From the reset condition, with

a = X = Y = 0, the first transition aI causes a transition Xf. The next transition a . causes a

transition YI, and thereafter, transitions on a cause alternate transitions on X and Y. As used in

the counter, the a input is the request input to the bit cell; the X output signals acknowledge

through the XOR gate when the bit value goes from zero to one, ending a carry propagation- and

the Y output signals a carry-out request to the next cell, when the bit value has changed from

one to zero. In this case, the counter acknowledge is generated through the XOR gate from a more

7
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Figure 5: Asynchronous Transition Toggle With Scan Path

significant bit. The internal toggle control signal t always corresponds to the correct bit value and

is used as a counter output. The reset signal is not shown. It is active low, and sets the values of

.V and Y to zero.

All modifications required to add a scan path to the counter occur in the toggle cell, as shown in

Figure 5. There are two bits of storage in the toggle cell, the values of X and '. These values

may be isolated by adding a third input, run, to the two NOR gates. Asserting run turns off both

clocked inverters, isolating the X and Y storage. The shift path is then formed with two clocked

inverters, added parallel to those in the C-elements. The first, clocked by control signal en, moves

the input value a into the N state bit; and the second, clocked by control signal en2, moves the

current X value into Y. Shifting may now be performed by raising run to isolate the cells, and

alternately clocking en and en2 as two non-overlapping signals to move the data. Also, with run.
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run

Figure 6: Three-Input CMOS NOR Gate - Transistor Schematic

enl. and en2 all high, the counter is transparent from request through carry-out. This allows

all X and Y values to be directly set low (or high), eliminating the need for a separate reset signal.

The modifications noted above are sufficient to convert the counter into an n-bit master-slave

asnchronous shift register. The shift path has 2n bits of storage (2 bits per cell), however only one

bit in each cell can be controlled or observed in a shift of n cells. Scan-path operation is discussed

in detail in Section 3.2.

Complete fault coverage requires two additional changes in the toggle cell. As discussed in the next

section, testing requires charging (discharging) a node, which is then discharged (charged) through

the pull-up or pull-down chain to be tested. In the cross-coupled NOR loop, it is not possible to

verify the pull-up chains in the inverters generating b3 and t 3 , since they are only used to set up

the loop for the next transition. This problem is solved by using the pairs (b 2 ,b 3 ) and (t 2 ,t 3 ) to

enable the clocked inverters, rather than (b1 ,b 2 ) and (tl,t 2 ) as in the base toggle design. The cost

is one more inverter delay added to the critical path of the toggle cell. The second change is in

the three input NOR gates. A transistor level drawing of this NOR gate is shown in Figure 6. In
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Figure 7: CMOS Clocked Inverter - Transistor Schematic

operation, run is always low and the sequence of input transitions is always iT, o{, fT, it, f,

O1. The output is always pulled down through the transistor gated by i, and the only function of

the puildown gated by the feedback term f is to hold the output low for a time equal to the NOR

loop delay, which is a few nano-seconds. This function is also performed by charge storage on the

node consisting of the NOR gate output and the following inverter input, making the transistor

unnecessary. It was eliminated from the testable toggle cell design.

3 Testing The Counter

Circuit testing for stuck-at and stuck-open faults is discussed in [3]. Stuck-at faults result in nodes

which are permanently connected to the power supply voltage or ground and never change value.

Open faults result in high impedance dynamic states within a pull-up or pull-down path and cause

sequential behavior in combinational circuits. Testing for both of these faults involves charging

(discharging) each circuit node, followed by discharging (charging) of that same node through the

portion of the circuit to be tested. An example is the clocked inverter shown in Figure 7. With

en high, the inverter is enabled and toggling in causes out to toggle if the circuit is correct. The

10



transistors gated by in are checked for both open faults and shorts. The transistors gated by en

are checked only for open faults, since they are always on in the test. Shorts in the transistors

gated by en are discovered with en low and a toggled input. Serial connection of circuit elements

simplifies testing, since all elements in the series chain may be tested in parallel [3]. An example

is a chain of inverters, where toggling the input must necessarily toggle all internal nodes and the

output from the last inverter.

A full test must ultimately verify that every node in the circuit can be pulled high and low. The most

straightforward test is a full functional test, which requires that all circuit outputs be observable,

and in the case of the counter requires exponential time. An alternative is the addition of a scan

path, allowing a known state to be shifted into the counter, and the resulting state after a node is

tested to be shifted out. This approach also reduces the number of required observable outputs to

the scan path output.

Four test procedures are required to completely test the asynchronous counter with scan path.

They are referred to as toggle test, shift test, cycle test, and XOR test- and are discussed in detail

below. In these discussions, all references will be to Figure 5, where the gates are numbered from

1-13. When a pull-up or pull-down path is tested, it will be listed in the test description as ui or

di, where i is the gate number in the figure. Each test involves placing the counter in a known

state, testing some portion of the circuit, and observing the results either at the carry-out pin or

the acknowledge pin.

1l



3.1 Counter States

The behavior of a cell, biti, is totally determined by the state of its internal toggle (see Figure 4),

and the value of its input. In the counter, the input to bito is request, and the input to biti is

the value of Yi- 1 , which is determined by the the state of the toggle in cell biti- 1 . The state of the

counter may then be completely described by writing down the value of request (0 or 1) followed

by the state of the toggle internal to each bit cell, from bit 0 through bit,- 1 . For example, Oaaa ...

is the state immediately after reset.

3.2 Shifting

With signal run high, the X and Y values in the toggle cells are isolated, and form a shift chain

from request, which is the input to bit 0 , through carry-out, which is the output of the high order

cell Y,-I. Three shift operations are possible. Toggling enl high and then low is referred to as

an x-shift. The effect is to copy each cells input into the X state bit, where the input to bit is

Yi-1, and the input to bit 0 is the request signal. This operation destroys the previous contents of

X in all cells. The second shifting operation is a y-shift, which copies the value of Xi into Yi for

all cells. This is also a destructive operation, in that the former Y values are overwritten. A full

shift consists of an x-shift followed by a y-shift, which treats X and Y as a master/slave pair. The

x-shiftmoves the new value into X, and the y-shift copies this new value into Y. It leaves X = Y

in all cells, with X0 set to request, and the old value of Y- 2 moved into Y,_ 1 =carry-out.

Observing the values of X and Y in each cell requires shifting them to Yn-1, which is the only

observable output on the shift path. Y,_ 1 is immmediately observable after a test step. 1',_ 2

is made observable by moving it to Y,_ 1 which requires one full shift (x-shift and then y-shift),

12



and in general, j full shifts move the contents of Y -.- 1 to Y,- 1 . Note that the very first x-shift

destroys the contents of all X state bits. Only the Y values are shifted out. To observe the X

values resulting from a test, the first operation must be a single y-shift, which copies the X values

into Y storage, from whence they may be shifted and observed at the carry-out pin.

3.3 Toggle Test

With signals run, eni and en2 all high, the clocked inverters in the shift path and the static

inverters in the cells are all connected in series, and the counter is transparent from request

through carry-out. In this state, toggling the input request from low to high to low causes the X

and Y values in every cell to be toggled in the same sequence. As in the clocked inverter example.

the shift path transistors gated by a and X in gates 8 and 10, and the static inverters in each cell

(gates 12 and 13) are completely tested, while the shift path transistors gated by enl and en2 are

tested only for open faults. Testing of these transistors for shorts is accomplished in the shift test.

The paths tested here include u8 , ujo, d8 , di 0 , d 12 , d 13 , u1 2 and u1 3 .

3.4 Shift Test

The clocked inverters enabled by b2 , b3 , t 2 and t 3 and the correct generation of these signals in the

NOR loop are tested by shifting zeros and/or ones through the counter. In general, if the enabling

signal is in error due to a problem in the NOR loop, or the gated transistor is shorted, the cell will

incorrectly move to another state, which is determined by shifting out the X or Y values. The four

possible errors and the corresponding tests are:

1. A cell in state a, X = 0, Y = 0, will move to state b if the enabling signal t 3 is high or the

pull-down transistor is shorted. This test places all cells in state a by performing n full shifts

13



with request low. If this error occurs, some Xi will toggle high. The X values are observed

by performing a single x-shift to save the X values in the Y storage, and the Y values are

shifted out to verify the circuit. The paths tested here include d,, u2 , d 3, d 4, u5 and d 6.

Also, d 9 is tested for shorted transistors.

2. A cell in state c, X = 1, Y = 1, will move to state d if the enabling signal t 2 is low or the

pull-up transistor is shorted. This test places all cells in state c by performing n full shifts

with request high. If this error occurs, some Xi will toggle low. The X values are observed

by performing a single x-shift to save the X values in the Y storage, and the Y values are

shifted out to verify the circuit. The paths tested here include d,, u 2 , d 3 , d 4 , u5 and d 6 .

Also, u9 is tested for shorted transistors.

3. A cell in state b, X = 1, Y =0, will move to state c if the enabling signal b3 is high or a pull-

down transistor (d1 o or d11 ) is shorted. Testing all cells for this error would require placing

the counter into state Obbb.... which is not possible. This error is tested for in combination

with the following.

4. A cell in state d, X = 0, Y = 1, will move to state a if the enabling signal b2 is low or a pull-up

transistor (ujo or u, is shorted. Testing all cells for this error requires placing the counter

into state ddd.... which is not possible. It is possible however, to place the counter into

state bdbd... or state dbdb.... and check for these last two errors in parallel. First, the

counter is placed into the state Odbdb... and the odd numbered cells in state b are tested

for error 3 while the even numbered cells in state d are tested for error 4. Then the counter

is placed into state lbdbd.... and the odd cells are tested for error 4, while the even cells

14



are tested for error 3.

The counter is placed into state lbdbd... by repeating n/2 times (One full shift with request

high followed by one full shift with request low), followed by a single x-shift with request

high. To check the results of this test, both the X and Y values must be observed, making it

necessary to perform the test twice. The first time, the Y values are shifted out and checked,

and the second time, the X values are saved with an x-shift, and then shifted out and checked.

The state ldbdb... is obtained by repeating n/2 times (one full shift with request low

followed by one full shift with request high), followed by a single x-shift with request low.

Again, both the X and Y values must be observed, so the test is performed twice. The first

time, the Y values are shifted out and checked, and the second time, the X values are saved

with an x-shift, and then shifted out and checked. The paths tested here include d,, u2 , d 3 ,

d4, u 5 , d 6 , d 9 and ug.

3.5 Cycle Test

The remainder of the toggle circuit is verified by simulating normal operation. In normal operation

each toggle cycles through states a, b, c and d, as shown in Figure 4. The behavior of cell biti

depends only on its current state and the value of the input, which is the Y value of the preceding

cell biti-,1 or the value of request. Considering the states of two adjacent cells, a combined state

may be written for a pair. There are 16 such pairs, from aa through dd. Eight of these pairs are

stable, in that the output from the left cell in the pair is such that the right cell will remain in its

present state. The remaining 8 pairs are unstable, with the input causing the right cell to toggle.

Cycle testing of the counter involves shifting in a known sequence of states which includes unstable

15



sequences, allowing the counter to operate, and then shifting out the resulting values of X and Y.

Shifting is performed with signal run high, disabling all clocked inverters in the normal operation

path. Cycling of the counter cells is then performed by lowering run with signals enl and en2

both low. The results are verified by raising run and shifting out the X and Y values. Each test

sequence must be performed twice: once to shift out the X values; and once to shift out the Y

values.

Two state sequences are required to fully test the remainder of the toggle circuit.

@ The first sequence is lccc. .. , which is obtained by setting all X and Y values high. This

sequence is unstable, as a cell in state c has its Y output high, so that all cells see a high

input; while a valid cell in state c with high input will cycle to state d. Testing then involves

setting the counter state, lowering signal run to allow the cells to cycle, raising signal run to

isolate the cells, and finally shifting out the X and Y values. The paths tested are the ones

that are active during the transition c=:d, and include u4 , d.5, u6 , u9 and d 13 .

9 The second state sequence used is Odbaa dbaa.... which contains the unstable sequences

Od and ad. In this sequence, the cells in state d will cycle to state a resulting in a counter

state Oabaa abaa. .. . The transition involved, d='a tests paths u7, d 4 , u5, d 6 , ul, d 2 , u11

and d 1 2 . The new sequence Oabaa abaa... contains the unstable sequence ab. From this

sequence, each cell in state b will cycle to state c, leading to the counter state Oacaa acaa...

. This transition, a=.b tests paths di, u 2 , d 3 , d7 , u 4 , d.5 , u 6 , d9 and u1 3 . The state sequence

Oacaa acaa... again contains an unstable sequence ca. Here, the cells in state a will cycle to

state b, leading to the final state Oacba acba which is stable. The third transition involved,

16
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Figure 8: Counter Acknowledge Generation - XOR Chain

b=>c tests paths U7, d 4 , u5 , d 6 , ul, d2, u3, dil and u 12.

This test effectively divides the counter into groups of four cells each, with the cells in state

d recreating a new carry chain in each group. The test must be repeated four times, using

the cyclic permutations of the state sequence dbaa.... so that each of the three transitions

involved is forced to occur at each bit position in each group, and each individual test must

be run twice in order to verify both the X and Y values resulting in each cell.

The basic state pattern Odbaa dbaa.. is obtained by repeating n/4 times (three full shifts

with request low, followed by one full shift with request high), followed by a single x-shift

with request low. The pattern db is the key to the O(n) test time of the counter, since this

pattern recreats a carry chain, allowing for parallel testing of bit cells. In this sequence, X

and Y have different values in each cell, which is made possible by the separate control for

x-shift and y-shift operations.

3.6 XOR Test

The counter acknowledge signal and internal cell acknowledge signals are generated by the XOR

gates in the cells. The chain of XOR gates and its inputs is shown in Figure 8. There are two

pull-up chains and two pull-down chains in each gate, which must each be tested by setting the

gate output to the appropriate value and discharging (charging) the node through the chain to be
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tested. This is straightforward in the testable counter since all inputs to the XOR gates are directly

settable by the shift chain. There are seven steps involved, all performed with signal run high:

1. With request low, n full shifts are performed, setting X= Y= Z= 0 in all cells.

2. With request high, n - 1 full shifts are performed. After the first full shift X 0 is high, while

all other values are unchanged. The low order XOR gate, which generates counter ackowledge,

must then toggle its output high for AoZ 1 . On the second shift, X 1 goes high, and XOR1

must toggle its output Z1 high for X 1 Z 2 , which then causes XORo to toggle its output low

for XoZ 1 . Thereafter, the ith full shift causes all XOR gates from i - 1 down to 0 to toggle

in sequence, always using pulup chain XZ and pulldown chain XZ.

3. One x-shift is performed to set X,,-, high. The high order cell now has X high and Y low,

forcing XOR,_ 1 to toggle Z,- 1 high, and again leading to a toggle sequence down to Zo.

4. One y-shift is performed to set Y,- I high, at which point all values in the cells are high and

XOR _1 must toggle Z,_ 1 low, causing one more toggle sequence through the XOR gates.

After this step, every pullup chain XZ, and every pulldown chain XZ has received a toggle

test and is verified.

5. At this point, the X and Y values in all cells are high. With request low, n - 1 full shifts are

performed. This step is similar to step 2 above, with each shift leading to a toggle sequence

through the XOR gates. However, this time the pull-up chain tested is X7 and the pull-down

chain is ,7.

6. One x-shift is performed to set X,_ 1 low. This step is similar to step 3 above, leaving Y,_-1

high. and forcing XOR,_ 1 output Z,_ 1 high, again causing an XOR toggle sequence.
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7. One y-shift is performed to set Y,_ 1 low. This forces XOR,._1 output Z,_-1 low and leads

to the last XOR toggle sequence. After this step, both pull-up chains and both pull-down

chains in each cell have been fully tested.

3.7 Test Time

In the case of a synchronous counter with a scan path the test time is 0(n 2 ), since shifting takes

0(n) time and the n cells must be tested one at a time. This is necessary due to limitations imposed

by the carry chain logic of the counter. There is only one bit of state in each cell of the synchronous

counter, and once the carry chain is broken in a cell, it cannot be restarted in a higher order cell.

In the asynchronous counter there are two bits of state in each cell, both on the scan path, and the

added flexibility allows the restarting of the carry chain, thus enabling the parallel testing of cells

and an 0(n) test time, as follows. The toggle test requires only four steps. All of the remaining

tests require shifting values in and/or out of the cells, where shifting takes 0(n) time. Since there

is a fixed constant number of tests, independent of the size of the counter, the overall test time is

0(n).

4 Future Study

An important characteristic of asynchronous systems is composability. The system control path may

be formed by the connection of the individual module request/acknowledge signals without regard to

timing considerations. It would be desirable to completely fold the scan path into this control path,

so that a testable asynchronous system could be composed from testable asynchronous modules

without regard to timing considerations or testing considerations. Both would be automatically

covered by the general design of the control/test interface.
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The testable counter, as now designed, has the scan path input merged with the counter request

line, but the scan path has two outputs - acknowledge and carry-out. In normal counter operation

the control sequence is from request through acknowledge, making it desireable to have carry-

out observable at the acknowledge pin when necessary during testing. This implies a multiplexer

selecting between carry-out and acknowledge from the low-order cell. The negative aspects of a

multiplexer are additional delay on the critical path through the counter in normal operation, and

the requirement for a signal to gate the multiplexer.

5 Experimental Results

The 16 bit chip layouts were reduced to 3 bits in order to run Splice3 simulations of both the

base design counter, and the counter with scan-path. Three bits provide an excellent estimate of

counter performance since each bit cell operates independently, and the performance of the counter

is dominated by the operation of the low-order cells. Figure 9 presents the time histories from the

simulation for both counters with identical request signal inputs. The degradation in performance

of the testable design averages 1.2 nano-seconds per bit cell (7.1 %), and is indicated by the later

transitions of acknowledge from the scan-path design ackS when compared to the base design

ackB.

6 Conclusions

Minimal modifications are required to add a scan path to an asynchronous counter, and the resulting

circuit is fully testable in linear time. This compares with quadratic time for scan-based synchronous

counters with similar observability constraints. Three scan path control signals are required, versus

one reset signal for the base design. However, the three signals may be wired together after
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testing is complete and used as a reset signal for the testable counter. Adding a scan path to

the asynchronous counter is actually simplified by the complexity of the base design (compared

to a synchronous counter). There are two bits of state per cell in the asynchronous circuit, and

the counter may be converted into an n-bit master-slave shift register with the counter's request

input being used as the scan-path shift register input. The two state bits in each cell may be set

independently, and it is the extra state bit that allows testing in O(n) time since carry propagation

chains may be started/restarted anywhere in the counter by appropriately setting the pairs of bits

in each cell. The only observable outputs are the acknowledge and carry-out signals. Two 16

bit counters, one base design and one scan based design, have been designed and are currently in

fabrication (2.0 n-well CMOS). The base design layout was derived from the scan-design layout in

order to provide estimates of area/speed cost of the scan path. The area cost is estimated to be

approximately 6%, which compares with an estimate of 15% for the synchronous counter [31; while

the circuit speed of the scan design is reduced by 7.1% (based on Splice3 simulation) from the base

circuit.

The counter utilizes two-cycle (transition) signaling and a bundled data protocol. Splice3 simula-

tions indicate the counter will run at an average speed of approximately 50 MHz.
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Figure 10: Asyncronous Counter Pin Assignments

A Chip Details

The 40 pin chip (MOSIS tiny-frame) contains two complete 16 bit asynchronous counters, one using

the base design and one using the testable scan design. There are insufficient pins on this chip to

bring out all bit values in both counters, so only selected high order bits are output. Bit1 5 is output

from both counters, and observing this bit will allow speed testing of the counters. The pinouts

for the fabricated chip are shown in Figure 10, and the pin functions are listed in Figure 11. Pin

names for the base design counter generally contain a B, while the testable counter is indicated

by S. Two of the pins, intst and outst are directly connected on the chip to provide an estimate

of pad delay. Since the output pad design is inverting, they also provide an inverter for counter

testing.
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Base Design Counter
reset Reset - Active Low
reqB Request
ackB Acknowledge
BBO-BB7 Low Order Bits 0-7 - Active High
BB9 Bit Position 9 - Active High

BB1l Bit Position 11 - Active High
BB15 Bit Position 15 - Active High

Testable Counter
run Shift Mode - Active High
enl Enable x-shift - Active High

en2 Enable y-shift - Active High

reqS Request
ackS Acknowledge
reqSN Carry-Out
SSO-SS7 Low Order Bits 0-7 - Active High
SS9 Bit Position 9 - Active High

SS11 Bit Position 11 - Active High
SS13 Bit Position 13 - Active High

SS15 Bit Position 15 - Active High

Chip Test Pins
intst Pad Test Input
outst Pad Test Output

Figure 11: Asynchronous Counters - Pin Assignments

Figures 12 and 13 present the layouts for the two toggle cells (base design and testable design)

using scalable CMOS rules. The layout for the base design was generated by modifying the toggle

layout for the testable design, in order to obtain best estimates for area and speed cost of the scan

path. The general layout of the 40 pin counter chip is shown in Figure 14.
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Figure 12: Base Design Asynchronous Toggle - CMOS Layout

Figure 13: Testable Asynchronous Toggle - CMOS Layout
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Figure 14: Asynchronous Counter Chip - CMOS Layout
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B Counter Test Command File

This appendix contains a listing of the RNL command file which encapsulates the complete test

sequence for an N bit testable counter. The test sequence is run with a call to the function runTest.

(defun stepp (incr)
(do ((stop-time (+ incr current-time)) (savex (* current-time 1))

(n t))
((null n))
(setq n (cond (switch-level (switch-step stop-time))

(t (sim-step stop-time))))
(cond (n (dpy-node-trans n)

(printf "0 S\n"
U/ (cond (relative-timing (- current-time savex))

(t (float current-time)))10)))
(t nil)))

Run the counter thru one step
(defun stepc x)
(l '(run))
(stepp incr)
(h '(run))
(stepp incr)

)

Shift a new value into X
(defun shiftX Cx)
(h '(enl))
(stepp incr) ;Shift into X
(1 '(eni))
(stepp incr) ;New value of X isolated

)

Shift a new value into Y
(defun shiftY (y)
(h '(en2))
(stepp incr) ;Shift into Y
(I '(en2))
(stepp incr) ;New value of Y isolated)

; Full shift step -- X first
(defun shift x)
(shiftX nil)
(shiftY nil))

; Print reqSI and shift next value
(defun shouR (a)

(prReq a)
(shift nil)

)
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Print 4 consecutive values of reqSl
(defun show4R (a b c d)
(showR d)
(showR c)
(shovR b)
(showR a))

Print 2 consecutive values of reqSl
(defun show2R (a b)

(shiftV a)
(shiftV b))

Shift zero's into all cells
(defun shiftO (N)
( '(reqS))
(repeat i I N (shift nil))

)

Shift one's into all cells
(defun shiftl (N)
(h '(reqS))
(repeat i I N (shift nil))

)

Shift zero and then one
(defun shift0l x)
(l '(reqS))
(shift nil)
(h '(reqS))
(shift nil))

Shift one and then zero
(defun shiftlO x)

(h '(reqS))
(shift nil)
(l '(reqS))
(shift nil))

Print True and Actual value of ackS
(defun prAck (a)

(printf "$$ ackS=%S - should be /S\n" (node-value 'ackS) a))

Print True and Actual value of ackS
(defun prReq (r)
(printf "$$ reqSN=S - should be %S\n" (node-value 'reqSl) r))

Shift Sequence [caaa]
(defun shiftS x)
(l '(reqS))
(shift nil)
(shift nil)
(shift nil)
(h '(reqS))
(shift nil)

)

29



Perform Phase 1 of cycleABD Test
(defun cycleABD1 (N mess)
(unchflag 'CreqSN))
(repeat i 1 (/ N 4) (shiftS nil))
(l '(reqS))
CshiftX nil) ;Sequence Edbaa]4 ==> [acba]4 with input low
Cur-report)
Cprintf "CELLS SHOULD NOW BE Edbaa]4\n')
Ch '(reqS))
(stepp incr)
(chf lag 'CreqSN))
(l '(run))
(stepp incr)
Cl 'CreqS))
Cstepp incr)
(h '(run)) ;X values should be [011014 Y values should be [0100)4
Cstepp incr)
Cur-report)
(printf "CELLS SHOULD NOW BE [acba]4 -- %/S\n\n' mess)

Perform Phase 2 of cycleABD Test
(defun cycleABD2 (V mess)

Cunchf lag 'CreqSI))
Cshift4S N 1)
(l 'CreqS))
(shiftX nil) ;Sequence [adba)4 ==> [aacb]4 with input low
Cr-report)
Cprintf CE:LLS SHOULD NOW BE [adbaj4\n")
Cchflag 'CreqSN))
Cl '(run))
Cstepp incr)
(h '(run)) ;X values should be [0011)4 Y values should be [0010)4
(stepp incr)
Cr-report)
(printf "CELLS SHOULD NOW BE [aacbJ4 -- %S\n\n" mess)

Perform Phase 3 of cycleABD Test
(defun cycleABD3 (N mess)
Cunchflag 'CreqSN))
(shift4S N 2)
CshiftX nil) ;Sequence [aadb]4 ==> [baacJ4 with input high
Cur-report)
(printf "CELLS SHOULD NOW BE [aadb]4\n")
(1 'CreqS))
(stepp incr)
Cchflag ICreqSN))
(1 '(run))
(stepp incr)
(h 'CreqS))
Cstepp incr)
(h '(run)) ;X values should be [1001)4 Y values should be [0001)4
Cstepp incr)
Cur-report)
Cprintf "CELLS SHOULD NOW BE [baac)4 -- */S\n\n" mess)
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Perform Phase 4 of cycleABD Test
(defun cycleABD4 (N mess)

Cunchf lag 'CreqSN))
Cshift4S N 3)
Ch 'CreqS))
(shiftX nil) ;Sequence [baadJ4 ==> [cbaa]4 with input low
Cur-report)
Cprintf "CELLS SHOULD NOW BE [baad]4\n")
Cchflag ICreqSI))
Cl 'Crun))
Cstepp incr)
(l 'CreqS))
Cstepp incr)
(h '(run)) ;X values should be [1100)4 Y values should be [100014
Cstepp incr)
Cur-report)
Cprintf "CELLS SHOULD NOW BE [cbaa]4 -- %.S\n\n" mess)

* Do [caaa] Shift N/4 times
(defun shift4S (N M)
(repeat i 1 Ul N 4) (shiftS nil))
C1 '(reqS))
(repeat i I M Cshift nil))

-,,;at the xor gates
(defuin xorO Cf 1)

(shift nil)
(prAck f) ;ackS should now be f
(shift nil)
(prAck 1) ;ackS should now be 1

* Run the Scan Counter for 2 Counts
(defun countS2 CW
(h 'CreqS))
Cstepp incr)
Cur-report)
(1 'CreqS))
(stepp incr)
Cur-report)

* Run the Base Counter for 2 Counts
(defun countB2 Wx
(h '(reqB))
Cstepp incr)
Cr-report)
(1 'CreqB))
Cstepp incr)
Cur-report)
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* Initialize the Scan Circuit and Test Shift Inverters
(defun initScan Wx

Csetq incr 10000)
Csetq switch-level nil)
Csetq relative-timing t)
Cunchflag 'CackS))
Cchflag 'CSSIS SS13 SSii SS9 SS7 SS6 SSS SS4 SS3 SS2 SS1 SSO))
Cprintf "\nINITIAL TEST\n")
(wY-report)
Ch '(run eni en2))
(1 'CreqS))
(step incr) ;X=Y=0 reqSN=O
(prReq 0)
(h 'CreqS))
(step incr) ;X=Y=1 reqS1=l
CprReq 1)
(1 'CreqS))
(step incr) ;X=Y=0 reqSN=O
(prReq 0)
(1 'Cen2))
Cstepp incr) ;X=Y=0 Isolate X and Y
(1 'Ceni))
Cstepp incr) ;X=Y=0 Isolate a and X
Cur-report)
Cunchflag: 'CSS15 5513 5511 559 SS7 SS6 SS5 SS4 SS3 552 SSI SSO))

Initialize the Base Circuit
(defun initBase Wx

Csetq mncr 10000)
(setq switch-level nil)
Csetq relative-timing t)
Cur-report)
Cprintf "\n\nINITIALIZE BASE COUNTER\n')
(l '(reset reqB))
(step incr)
Cur-report)
Cprintf ' ackB is %.S -- should be 0\n" (node-value 'ackB))
Ch 'Creset))
(step incr)
C yr-report)

Test transition from state C to state D
Cdefun cycleCD CN)

Cprintf "\nSTATE TRANSITION TEST\n")
Cshiftl N)
Cstepc nil)
Cr-report)
Cprintf "ALL X VALUES SHOULD BE 0\n")

* (shiftY nil)
(repeat i 1 N (shouR 0))
(shifti N)

* (stepc nil)
Cr-report)
Cprintf "ALL Y VALUES SHOULD BE 1\n")
(repeat i 1 N CahowR 1)
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Perform the shift test
(defun shftScan (N)
(printf "\nSHIFT TEST -- PART l\n\n")
(repeat i 1 N (shift nil)) ;Shift N zero's -- X=O Y=O
(repeat i 1 N (showR 0))
(printf "\nSHIFT TEST -- PART 2\n\n")
(h '(reqS))
(stepp incr)
(repeat i I N (shift nil)) ;Shift I one's --- X=1 Y=1
(repeat i I N (showR 1))
(printf "\nSHIFT TEST -- PART 3\n\n")
(repeat i 1 (/ N 2) (shift0l nil)) ;X=I Y=1 in cells 0, 2, 4, etc.
(1 '(reqS)) ;X=O Y=O in cells 1, 3, 5, etc.
(stepp incr)
(shiftX nil) ;X=O Y=1 in cells 0, 2, 4, etc.;X1 Y=O in cells 1, 3, 5, etc.
(repeat i 1 ( N 4) (show4R 1 0 1 0))

(printf "\nSHIFT TEST -- PART 4\n\n")
(repeat i I ( N 2) (shiftlO nil)) ;X=O Y=O in cells 0, 2, 4, etc.
(h '(reqS)) ;X=1 Y=1 in cells 1, 3, 5, etc.
(stepp incr)
(shiftX nil) ;X=i Y=O in cells 0, 2, 4, etc.

;X=O Y=1 in cells 1, 3, 5, etc.(rep..at i 1 (/ N 4) (shov4R 0 1 0 1))
)

Test transitions from A-B, B-C, and D-A
(defun cycleABD (N)
(printf "\nSTATE TRANSITION TEST\n")
(cycleABDI N "SHIFT OUT X VALUES")
(shiftY nil)
(repeat i I (/ N 4) (show4R 0 1 1 0)) ;Print X values
(cycleABD1 N "SHIFT OUT Y VALUES")
(repeat i I (/ N 4) (show4R 0 1 0 0)) ;Print Y values
(printf "\nSTATE TRANSITION TEST\n")
(cycleABD2 N "SHIFT OUT X VALUES")
(shiftY nil)
(repeat i 1 (/ N 4) (show4R 0 0 1 1)) ;Print X values
(cycleABD2 N "SHIFT OUT Y VALUES")
(repeat i 1 (/ N 4) (show4R 0 0 1 0)) ;Print Y values
(printf "\nSTATE TRANSITION TEST\n")
(cycleABD3 N "SHIFT OUT X VALUES")
(shiftY nil)
(repeat i I (/ N 4) (show4R 1 0 0 1)) ;Print X values
(cycleABD3 N "SHIFT OUT Y VALUES")
(repeat i I (/ N 4) (show4R 0 0 0 1)) ;Print Y values
(printf "\nSTATE TRANSITION TEST\n")
(cycleABD4 N "SHIFT OUT X VALUES")
(shiftY nil)
(repeat i I ( N 4) (show4R I 1 0 0)) ;Print X values
(cycleABD4 N "SHIFT OUT Y VALUES")
(repeat i 1 (U N 4) (show4R 1 0 0 0)) ;Print Y values
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(defun xortest (N)
(printf "\nXR TEST -- PART 1\n")
(unchflag '(ackS))
(wr-report)
(shiftO N) ;X=Y=O for all cells
(chf lag '(ackS))

* (h '(reqS))
(stepp incr) ;Prepare to shift one's into the counter
(prAck 0)
(repeat i 2 UI N 2) (xorO 1 O));Shift N one's into the counter

* (shift nil)
(prAck 1)
(shiftX nil)
(prAck 0)
(shiftY nil)
(prAck 1)
(yr-report)
(printf "\nOR TEST -- PART 2\n\n")
(unchflag '(ackS))
(shiftl N)
(chf lag ICackS))
(1 'CreqS))
Cstepp incr) ;Prepare to shift zero's into the counter
(prAck 1)
(repeat i 2 (IN 2) (xorO 0 1));Shift N zero's into the counter
(shift nil)
(prAck 0)
(shiftX nil)
(prAck 1)
(shiftY nil)
(prAck 0)
(wr-report)
(unchflag '(ackS))

Run the Scan Counter for N*2 Counts
(defun countScan (P)

(1 '(reqS))
(h '(run erl en2))
(unchflag '(SS15 SS13 SS11 SS9 S57 SS6 SS5 SS4 SS3 SS2 SS1 SSO))
(stepp incr)
(1 '(eni en2))
(stepp incr)
(1 '(run))
(stepp incr)
(chflag '(ackS SSIS SS13 SSII SS9 SS7 SS6 SSS SS4 SS3 SS2 SSI SSO))
(yr-report)
(repeat i 1 P (countS2 nil))
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Run the Bace Counter for N*2 Counts
(defun countBase (P)
(l1'(reqB reset))
(unchf lag '(EBIS BBll BB9 BB7 BB6 BBS BB4 BB3 BB2 BBI BBO))
(stepp incr)
(h '(reset))
(stepp incr)
Cchflag 'Cack B15 BBll BB9 BB7 BB6 BE5 EM4 BB3 BB2 EBl EBO))
Cur-report)
(repeat i 1 P CcountB2 nil))

Run the Complete Test Sequence
(defun runTest (I C)

(def-report IC" " (vec RA) (vec SS) (vec XS) (vec YS) )
Cprintf "\ri\--------------------BEGIN SCAN TEST\n\n")
(initScan nil)
(shftScan N)
(cycleCD N)
(cycleABD N)
(xortest N)
(printf "\n\n----------------- END SCAN TEST\n\n")
(def-report 'C" " (vec RA) Cvec SS) ))
(printf ------------- FUNCTION TEST -- COUNT FROM ZERO\n\n')
(countScan C)
(printt "\n\n----------------- END OF PARTIAL FUNCTION TEST\n')
(chf lag '(ackB))
(def-report '" (vec RB) (vec BE) (vec XE) (vec YE) )
(printf "\n------------------ BEGIN BASE TEST\n\n")
(chflag '(EBlS Bli EB9 BE7 BB6 BBS EB4 BB3 BB2 BBI EBO))
(init~ase N)
(printf "\n\------------------ FUNCTION TEST BASE - COUNT FROM ZERO\n\n")
(def-report '(" " (vec RE) (vec BE) )
(count~ase C)
(printf "\n\n----------------- END FUNCTIONAL TEST- BASE CIRCUIT\n\n")
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